Veja como a simulação multifísica é usada em pesquisa e desenvolvimento

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Veja a coleção da COMSOL Conference 2019

MEMS and Nanotechnologyx

2D Simulation of Cardiac Tissue novo

S. Esfahani[1]
[1]University of South Florida, Tampa, FL, USA

A two-dimensional atrial tissue model has been constructed in COMSOL Multiphysics® software to study the propagation of action potential and electrograms. The model presents the atrial electrograms recorded with a mapping catheter. A 2D atrial tissue model is simulated using the ... Saiba Mais

Simulation of Cellular Traction Force Based Deflection of PDMS Micropillars novo

J. Wala[1], D. Maji[1], S. Dhara[1], S. Das[1]
[1]Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Cells are complex entities which not only passively sense external stimuli (viz. chemical, optical or mechanical) but also interact with extracellular matrix (ECM) by regulating cellular behavior such as growth, proliferation, migration, etc. Monitoring cell growth and migration of ... Saiba Mais

Modeling of Directional Dependence in Nanowire Flow Sensor novo

A. Piyadasa[1,3], P. Gao[1,2,3]
[1]Department of Physics, University of Connecticut, Storrs, CT, USA
[2]Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA
[3]Institute of Materials Sciences, University of Connecticut, Storrs, CT, USA

3D finite element analysis model has been constructed for testing the directional dependence in a novel form of nanowire array gas flow sensor. Single nanowire (p-type single crystal Silicon) model is developed using fluid structure interaction and piezoresistivity components in the MEMS ... Saiba Mais

COMSOL Multiphysics® Based Identification of Thermal Properties of Mesoporous Silicon by Pulsed Photothermal Method novo

N. Semmar[1], I. El Abdouni[1], A. Melhem[1]
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France

The silicon is mainly known under its single-crystal shape and polycrystalline. Since a few decades, a new type of morphology is developed: the porous silicon (p-Si). Meso-porous silicon (Mp-Si) is one of promising materials for future microelectronic chips multi-functionalization ... Saiba Mais

Design and Simulation of High-Throughput Microfluidic Droplet Dispenser for Lab-on-a-Chip Applications novo

C. Jin[1], X. Xiong[2], P. Patra[1], R. Zhu[1], J. Hu[3]
[1]Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA
[3]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA

Digital Microfluidic Biochip (DMFB) has been widely used in Lab-on-a-Chip (LoC) for disease diagnosis and treatment applications. To quickly convert traditional analog fluidic sample into digital droplets for DMFB processing, a high-throughput microfluidic droplet dispenser device is ... Saiba Mais

Digital Microfluidic Droplet Adapter for Interconnection of Biochips novo

R. Zhu[1], X. Xiong[2], P. Patra[1], C. Jin[1], J. Hu[3]
[1]Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Department of Electrical & Computer Engineering, University of Bridgeport, Bridgeport, CT, USA
[3]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA

In this research, we use the COMSOL Multiphysics® software to design and simulate a digital microfluidic droplet adapter for board-level biochip integration. Digital Microfluidic Biochip (DMFB) has gained tremendous research interest in recent years due to its importance in Lab-on-a-Chip ... Saiba Mais

Modeling and Simulation of Dual Application Capacitive MEMS Sensor novo

A. Ravi[1], R. Krishna[1], J. Christen[1]
[1]Arizona State University, Tempe, AZ, USA

Capacitive MEMS sensors offer high spatial resolution, sensitivity and good frequency response. In this paper, we present a circular membrane capacitive MEMS device that finds use both as capacitive micromachined ultrasonic transducer (CMUT) and pressure sensor. The MEMS device is first ... Saiba Mais

CVD Graphene Growth Mechanism on Nickel Thin Films novo

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very ... Saiba Mais

DNA Interactions in Crowded Nanopores novo

K. Misiunas[1], N. Laohakunakorn[1], S. Ghosal[2], O. Otto[1], U. F. Keyser[1]
[1]University of Cambridge, Cambridge, UK
[2]Northwestern University, Evanston, IL, USA

The motion of DNA in crowded environments is a common theme in physics and biology. Examples include gel electrophoresis and the self-interaction of DNA within cells and viral capsids. Here we study the interaction of multiple DNA molecules within a nanopore by tethering the DNA to a ... Saiba Mais

Design and Simulation of an Orbiting Piezoelectric MEMS Gyroscope Based on Detection of Phase-Shift Signals novo

S. Gorelick[1], J. R. Dekker[1], B. Guo[1], H. Rimminen[1]
[1] VTT Technical Research Centre of Finland, Espoo, Finland

The feasibility of phase-sensitive detection of angular-rates using bi-directional orbiting piezoresonators suspended by thick annular springs with thin-film aluminium nitride piezoactuators on top of them was investigated. The ring-shaped flexures are more suitable for supporting the ... Saiba Mais