See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Multiphysicsx

Energy Exchange During Electron Emission from Carbon Nanotubes: Considerations on Tip Cooling Effect and Destruction of the Emitter

M. Dionne, S. Coulombe, and J. Meunier
Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada

Murphy and Good general theory for electron emission from metal surfaces was used to predict the field-emission capabilities of ideal arrays of vertically aligned carbon nanotubes (VACNT). The Nottingham effect was taken into account in order to explain experimental observation of a ... Read More

Simulation of Dielectric Barrier Discharge Lamp Coupled to the External Electrical Circuit

A. El-Deib[1], F. Dawson[1], S. Bhosle[2], D. Buso[2], and G. Zissis[2]
[1]University of Toronto, Toronto, Ontario, Canada
[2]LAPLACE-University of Toulouse, Toulouse, France

This work uses COMSOL to simulate the Dielectric Barrier Discharge (DBD) lamp coupled to the external electrical circuit. The coupled system is modeled to capture the effect of the electrical parasitic elements on the efficiency of the DBD which is more realistic as compared to previous ... Read More

Gate Control of Single-Electron Spins in GaAs/AlGaAs Semiconductor Quantum Dot

S. Prabhakar and J. Raynolds
College of NanoScale Science and Engineering, University at Albany, Albany, NY, USA

Non-charge-based logic is the notion that an electron can be trapped and its spin manipulated through application of gate voltages. Numerical simulations of Spin Single Electron Transistors (SSET) at University at Albany, aimed at practical development of post-CMOS concepts and devices ... Read More

A Time Dependent Dielectric Breakdown (TDDB) Model for Field Accelerated Low-K Breakdown Due To Copper Ions

R. Achanta, J. Plawsky, and W. Gill
Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

We have simulated the copper ion concentration and internal electric field profiles in a dielectric material by solving the transient continuity/Poisson equations using COMSOL Multiphysics. We have shown that failure of dielectrics can be modeled if we assume that failure in Cu/SiO2/Si ... Read More

Stochastic Approach in Approximation of the Transient Plasma Sheath Behavior in FEM

J. Brcka
TEL US Holdings, Inc., Albany, NY, USA

Recently, the advanced plasma tools have been using very high frequency power sources (>100 MHz) and their combination to excite plasma utilized in semiconductor technology. This approach is evoking the regimes that are less understood and currently a subject to many studies and ... Read More

Finite Element Analysis of Ferrofluid Cooling of Heat Generating Devices

T. Strek
Institute of Applied Mechanics, Poznan University of Technology, Poznan, Poland

An external magnetic field imposed on a ferrofluid with a temperature gradient, results in a non-uniform magnetic body force, which leads to a form of heat transfer called thermomagnetic convection. A magnet placed near the device will always attract the colder ferrofluid more than ... Read More

Optics at the Nanoscale: Merging Nanoparticles with Light

Naomi Halas
Professor of Electrical and Computer Engineering, Chemistry and Bioengineering,
Rice University, Houston, TX, USA

Dr. Naomi Halas is currently Professor of Electrical and Computer Engineering, Chemistry, and Bioengineering at Rice University. She is the inventor of nanoshells, nanoparticles with optical resonances spanning the visible and infrared regions of the spectrum. She is co-founder of a ... Read More

Modeling Implementation of Smart Materials such as Shape Memory Alloys and Electro-Active Metamaterials

Manuel Collet
PhD
Femto-STInstitute UMR CNRS 6174 Dept Applied Mechanics,
Besancon, France

Manuel Collet is a member of the Department of Applied Mechanics of the FEMTO-ST Institute. He graduated with a degree in Mechanical Engineering from Ecole Centrale de Lyon in 1992 and obtained his PhD in 1996 about Active control of vibrating structures by mean of semi distributed ... Read More

Investigation of Stability of Current Transfer to Thermionic Cathodes

M. Benilov, and M. Faria
Departamento de Física, Universidade da Madeira, Funchal, Portugal

Current transfer from high-pressure arc plasmas to thermionic cathodes may occur in a diffuse mode, when the current is distributed over the front surface of the cathode, or in a spot mode, when most of the current is localized in one or more small areas. Spectra of perturbations of 3D ... Read More

Electric Field Distributions and Energy Transfer in Waveguide-Based Axial-Type Microwave Plasma Source

H. Nowakowska[1], M. Jasínski[1], and J. Mizeraczyk[1,2]
[1]The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland
[2]Dept. of Marine Electronics, Gdynia Maritime University, Gdynia, Poland

In this paper, we examine changes of the electric field distributions in waveguide-based axial-type microwave plasma source (MPS) during tuning procedure. The distributions strongly depend on position of the movable short, so does the wave reflection coefficient of the incident wave. A ... Read More