Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

FE Modeling of Surfaces with Realistic 3D Roughness: Roughness Effects in Optics of Plasmonic Nanoantennas

J. Borneman[1], A. Kildishev[1], K. Chen[1], and V. Drachev[1]

[1]School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

COMSOL Multiphysics has been widely used to model the near and far-field electromagnetics (specifically, transmission and reflection spectra) of gold and silver nanoantenna arrays. We use a moving 3D mesh, thus preserving the DOF number and simply morphing the structure of the mesh to accommodate the moving boundary. The electromagnetics model consist of four multiphysics models, two ...

Calculating and Observing Opto-Mechanically Induced Surface Acoustic Waves in a Silica Whispering Gallery Microresonator

J. Zehnpfennig
Photonics Research Center
United States Military Academy
West Point, NY

Here we calculate opto-mechanically induced Surface Acoustic Waves upon a silica microresonator using COMSOL. Using conservation of momentum, we show both analytically and numerically that the photonphonon interaction within the resonator cavity causes a moving train of electrodes - a virtual grating of matter density – that displace material in different directions and magnitudes. This hyper ...


刘小璐 [1], 汪滢莹 [1], 田翠萍 [1],
[1] 北京工业大学, 北京,中国

空芯光子晶体光纤(HC-PCFs)具有不同于传统光纤的带隙导光机制,在光通信系统、高功率激光器、工业制造和生物医疗等许多领域有广阔的应用前景。随着光纤拉制技术的不断进步,不同纤芯结构的 HC-PCFs 出现并带来了更好的光传输特性(图1)。通过设计新的纤芯形状,并运用 COMSOL Multiphysics® 中的 RF 模块进行仿真,可以研究各种纤芯 HC-PCFs 的模式(图2)、泄漏损耗(图3)和波导色散(图4)等特性。结果表明:设计的内凹圆化形纤芯 HC-PCFs 比传统的正十二边形纤芯 HC-PCFs 有更低的泄漏损耗和波导色散,而设计的内凹直线形纤芯 HC-PCFs 有很低的泄漏损耗和大的波导色散。新设计的纤芯结构未来可用于大容量光通信、光孤子传输以及色散补偿等应用中。

Plasmonics Based Keys for Image Encryption that Uses Exclusive OR Logic Operation - new

N. K. Nishchal[1], A. Fatima[1], I. Mehra[1], D. Kumar[1]
[1]Indian Institute of Technology Patna, Patna, Bihar, India

Optical encryption has become a significant research field due to its remarkable advantages [1-5]. The unique features of plasmonics have drawn researchers’ attention towards the role which it can play in information security [3 & 4]. The electric field is greatly enhanced when a metallic nanoparticle is illuminated by an appropriate electromagnetic field. The distribution and enhancement of ...

Surface Plasmon Polaritons Photonic Device Design and All-optical Modulation

J. Chen
Peking University, Beijing, China

Surface plasmon polaritons (SPPs), which are confined along metal-dielectric interfaces, have attracted great interest in the area of ultracompact photonic circuits due to their strong field confinement and enhancement. COMSOL Multiphysics is an efficient and powerful software package to simulate the characteristics of SPPs. In recent years, we did some works on SPPs in experiments as well as ...

Simulation of Optical Ring Resonator Based on Lithium Niobate on Insulator

H. Kumar [1], V. Janyani [1], B. Oleh [2], U. Serhij [2], S. Dmytro [2], G. Singh [1],
[1] Dept. of Electronics and Communication Engg., Malaviya National Institute of Technology Jaipur, India
[2] Inst. of Tele. Radioelectronics and Electronic Engg.,Lviv Polytechnic National University, Lviv, Ukraine

In this paper, all optical microring resonator based on Lithium Niobate on Insulator (LNOI) has been proposed. LNOI has high refractive index contrast and also show better electro-optic & acousto-optic effects. The optical ring resonator resonates when the optical path-length of the ring is equal to the integral multiple of the wavelength. The Wave Optics Module of COMSOL Multiphysics® software ...

Investigation of Ablation of a Copper Surface Caused by 220 Nanosecond Laser Pulse

M. Dillmann [1], B. Braun [1], M. Kottcke [1],
[1] Technische Hochschule Georg-Simon-Ohm, Nuernberg, Germany

This work investigates the ablation of a copper surface caused by the irradiation of a 220 ns laser pulse. Our focus is on the heat transport within the copper and takes the proceeding vaporization of surface substance into account. Our model ignores plasma dynamics and simulates the energy deposition using a surface heat source. The underlying absorption coefficient is made temperature ...

Heating of Metal Nanoparticles on Absorbing Substrates

L. Bergamini [1], O. Muskens [2], N. Zabala [1], J. Aizpurua [3]
[1] UPV/EHU, Bilbao, Spain; Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain
[2] University of Southampton, Southampton, UK
[3] Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain

It is well-known that metal nanoparticles (NPs) excited at the plasmon frequency not only exhibit peculiar optical properties (e.g., a peak in the extinction spectrum, an enhanced electromagnetic near-filed) but also heat up [1]. This phenomenon is highly investigated for medical applications, but it can be exploited also for the realization of optical devices. In our study we use COMSOL ...

Doping Dependent I-V Characteristics of Single Silicon Nanowire

S. Mishra [1], S. K. Saxena [1], P. Yogi [1], P. R Sagdeo [1], R. Kumar [1],
[1] Indian Institute of Technology Indore, Indore, Madhya Pradesh, India

In the present work, we have studied the electron transport properties of single silicon nanowire using Semiconductor Module of COMSOLMultiphysics software. We construct a MSM (metal-semiconductor-metal) model where metal is selected as copper and semiconductor is taken as silicon. Silicon is doped with n-type impurity by increasing doping concentration. Further, the Schottky diodes formed at ...

Tunable Resonance of Star Shaped Nanostructures

R. Díaz de León-Zapata [1,2], B. Mora [2], M. Jose-Yacaman [3], F. J. Gonzalez [2]
[1] Instituto Tecnológico de San Luis Potosí, Av. Tecnológico s/n, San Luis Potosí, S.L.P., Mexico
[2] Universidad Autónoma de San Luis Potosí, CIACyT, San Luis Potosí, S.L.P., Mexico
[3] University of Texas at San Antonio, San Antonio, TX, USA

Auto assembled Ag-ZnO [1] star shaped nanostructures depicted in figure 1, presents their natural electromagnetic resonance at 60 THz. In this work we present that is possible to change this value by covering it with a variable in thickness layer of gold. The analysis is performed by numerical simulations using COMSOL Multiphysics® software.