Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

COMSOL API Based Toolbox for the Mixed-Level Modeling of Squeeze-Film Damping in MEMS: Simulation and Experimental Validation

M. Niessner[1], G. Schrag[1], J. Iannacci[2], and G. Wachutka[1]
[1]Institute for Physics of Electrotechnology, Munich University of Technology, Munich, Germany
[2]MEMS Research Unit, Fondazione Bruno Kessler, Povo di Trento, Italy

We present an easy-to-use toolbox for the automated generation of reduced-order mixed-level models for the evaluation of squeeze-film damping in microelectromechanical systems. The toolbox is programmed in JAVA and heavily exploits the functionality provided by the COMSOL API. The results obtained from mixed-level model simulation performed in COMSOL Multiphysics agree very well with ...

Shape Optimization of Electric and Magnetic System using Level Set Technique and Sensitivity Analysis

Y. Sun Kim, A. Weddemann, J. Jadidian, S. Khushrushahi, and M. Zahn
Dept. of Electrical Engineering and Computer Science
Cambridge, MA

The classical optimization method has been applied to many design problems for electromagnetic systems. One of its major difficulties is related to meshing problems arising from shape modifications. In order to circumvent these kinds of technical difficulties with moving mesh problems, several researches have tried to formulate shape optimization with fixed mesh analyses based on fixed grid ...

A Wide Range MEMS Vacuum Gauge Based on Knudsen’s Forces

V. Sista, and E. Bhattarchaya
Microelectronics and MEMS Lab
Department of Electrical Engineering
Indian Institute of technology Madras
Chennai, India

A MEMS based Knudsen’s pressure gauge working in the range of 1e-5 mbar to 10 mbar is designed and simulated in COMSOL. The working principle is based on Knudsen’s forces that arise when two plates are held at different temperatures and their separation is comparable to the mean free path of the ambient gas molecules. The forces change the separation between the plates and capacitance between ...

Electro-Stimulating Implants for Bone Regeneration: Parameter Analysis on Design and Implant Position

Y. Su[1], R. Souffrant[1], D. Klüß[1], R. Bader[1], M. Ellenrieder[1], and H. Ewald[2]
[1]Department of Orthopaedics, University of Rostock, Rostock, Germany
[2]Department of General Electrical Engineering, University of Rostock, Rostock, Germany

A common clinical treatment is the application of alternating electromagnetic fields using a screw implant to the weak bone tissue within the femoral head, which speed up the bone regeneration in case of avascular necrosis of the femoral head . In our present work the bipolar induction screw system as the depicted ASNIS S-Series screw with integrated coil and electrodes were investigated. ...

Near-fields in Arrays of Triangular Particles: Coupling Effects and Field Enhancements

M. Goncalves[1], T. Makaryan[2], G. Papageorgiou[3], U. Herr[3], and O. Marti[1]
[1]Ulm University - Inst. of Experimental Physics, Ulm, Germany
[2]Yerevan State University, Yerevan, Armenia
[3]Ulm University - Institute of Micro and Nanomaterials, Ulm, Germany

Surface enhanced Raman scattering (SERS) investigations of silver and gold triangular nanoparticles reveal strong field enhancements at the corners of the particles. Though the measurements were done at wavelengths far from the surface-plasmon resonance of the particles, large field enhancements can be generated by near-field coupling between the triangular particles and smaller metal ...

Study of Thermal Behavior of Thermoset Polymer Matrix Filled with Micro and Nanoparticles

B. Reine[1], J. Di-Tomaso[2], G. Dusserre[1], P. Olivier[1]
[1]Université de Toulouse, UPS, INSA, Mines Albi, ISAE, ICA, IUT, Dept. GMP, Toulouse Cedex, France
[2]RESCOLL - Société de Recherche, Pessac Cedex, France

This paper addresses the study of thermal behavior of thermoset polymer matrix filled with microparticles. A numerical model was developed with COMSOL Multiphysics to get a random spatial distribution of fillers in a representative volume element (RVE). This model was then compared to an analytical reference model (Hamilton model) and experimental results. This comparison highlights a good ...

A Computational Approach for Optimizing the First Flyer Using COMSOL Multiphysics

A.H. Aziz[1], H. Pourzand[1], A.K. Singh[1]
[1]Pennsylvania State University, University Park, PA, USA

COMSOL Multiphysics software was used to structurally optimize the Wright brothers’ flyer. The flyer was drawn in SolidWorks, imported and meshed in COMSOL. COMSOL Solid Mechanics module was used to analyze the flyer. Four of the sixteen struts were removed yet the structural integrity of the flyer was maintained. COMSOL Laminar Flow module was used to compute the aerodynamic forces and ...

Web Based Laboratories for Teaching Electromagnetics for TEMPUS eLab Project

Y. El-Qattan [1], H. Ghali[1]
[1]Electrical Engineering Department, The British University in Egypt (BUE), El Sherouk City, Egypt

This paper presents a successful step towards the development of a “web-based laboratory” for teaching basic, and even advanced, electromagnetic concepts. The main idea is to develop a reusable model for the student to be used exactly as a hardware experiment in a physical laboratory, where he/she can change some of the experiment\'s physical parameters and get corresponding results. The two ...

FEM-Simulation of a Printed Acceleration Sensor with RF Readout Circuit

H. Schweiger[1], T. Göstenkors[1], R. Bau[1], D. Zielke[1]
[1]Dept. Engineering Sciences and Mathematics, University of Applied Sciences Bielefeld, Bielefeld, Germany

In this paper we want to figure out the development of a capacitive acceleration-sensor system with the FEM-Method. The sensor-system is in the position to detect accelerations in the range of ±20 g. Furthermore the sensor-element contains a printed RF-inductance, which is used for contactless data transfer. On the one hand the simulation of the L-C-oscillating circuit using the RF Module of ...

AO@SW with Vrala: Simulations and Tests

C. Del Vecchio[1], G. Agapito[1], L. Carbonaro[1], F. Marignetti[2], E. De Santis[2], Y. Coia[2]
[1]National Institute for Astrophysics, Arcetri Astrophysical Observatory, Firenze, Italy
[2]University of Cassino and Southern Latium, Cassino, Italy

VRALA is the ideal candidate as an Adaptive Optics actuator at visible wavelengths. Its electric characteristics variations, suitable current commands, and an effective magnetic circuit geometry provide a 2 kHz correction bandwidth and a 25 mm actuator density. The magnetic core allows unprecedented performances with a negligible thermal impact. Pre-shaping the coil currents greatly simplifies ...