Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Numerical Analysis of Conjugate Heat Transfer in a Combustion Chamber and Firetubes

K. R. Anderson [1], C. Collizi [2],
[1] California State Polytechnic University, Ponoma, CA, USA
[2] Cryoquip, Inc., Murrieta, CA, USA

This paper presents the use of COMSOL's Conjugate Heat Transfer capabilities to model the coupled conduction, convection and surface-to-surface radiation heat transfer in a combustion chamber, firetube heat exchanger device. The paper details the geometry, mesh, governing equations and provides post procession results. The motivation of the study was to compare the COMSOL CFD based results for ...

Near-Field of Resonating Piezoelectric Membrane Used as Ultrasound Transducer

V. Tzanov [1], J. Munoz [1], F. Torres [1], N. Barniol [1],
[1] Universitat Autonoma de Barcelona, Bellaterra, Spain

Micro-machined ultrasound transducers have a wide range of applications. As a sensor or actuator they can be used for measuring fluid speed and direction, to mix and excite particles (sonication), for taking images (ultrasonography), for non-destructive testing and many other purposes in wide variety of fields. For this particular study, a simplified model of micro-machined piezoelectric ...

Optimization of an Explosive Mixture Cooling Process Including a Phase Change

J. D. Wheeler [1], P. Namy [1], C. Coulouarn [2], E. Benade [2],
[1] SIMTEC, Grenoble, France
[2] TDA Armements, LA-FERTÉ-SAINT-AUBIN, France

In the scope of improvement of the industrial “ammunition cooling” process, a COMSOL Multiphysics® model is developed to transfer an existing cooling process. A device filled with a liquid explosive mixture is placed in an apparatus which controls the environment temperature. This explosive mixture undergoes a phase change during the cooling and the solidification enthalpy is introduced to the ...

Optics at the Nanoscale: Merging Nanoparticles with Light

Naomi Halas
Professor of Electrical and Computer Engineering, Chemistry and Bioengineering,
Rice University, Houston, TX, USA

Dr. Naomi Halas is currently Professor of Electrical and Computer Engineering, Chemistry, and Bioengineering at Rice University. She is the inventor of nanoshells, nanoparticles with optical resonances spanning the visible and infrared regions of the spectrum. She is co-founder of a company developing nanoshell-based cancer therapy. She is author of more than 150 refereed publications, more than ...

COMSOL Multiphysics for Efficient Solution of a Transient Reaction-Diffusion System with Fast Reaction

M.K. Gobbert[1], A. Churchill[1], G. Wang[1], and T.I. Seidman[1]
[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

A reaction between chemical species is modeled by a particular reaction pathway, in which one reaction is very fast relative to the other one. The diffusion controlled reactions of these species together with a reaction intermediate are described by a system of three transient reaction diffusion equations over a two-dimensional spatial domain. In the asymptotic limit of the reaction parameter ...

A Moisture Transfer Model for Drying of Grain

K. Lund[1]
[1]Kurt Lund Consulting, Del Mar, California, USA

A kernel of grain is modeled as an isothermal sphere, with descriptive differential equations scaled or rendered into non-dimensional form, where moisture transfer is governed by internal diffusivity, not by surface conditions. The time dependent problem is solved with COMSOL and the average non-dimensional moisture content and its time-rate of change are obtained; by regression, these numerical ...

2D Extraction of Open-Circuit Impedances of Three-Phase Transformers

R. Escarela-Perez[1], E.A. Gutierrez-Rodriguez[2], J.C. Olivares-Galvan[1], M.S. Esparza-González, and E. Campero-Littlewood[1]

[1]Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, Mexico D.F., Mexico
[2]Instituto Tecnologico de Aguscalientes, Aguascalientes, Mexico

This work is concerned with the study of the asymmetrical phenomenon observed in three-phase transformers during the standard short-circuit test. The purpose of our work is to see if the asymmetric measurements can be predicted with the use of 2D finite-element models. To this end, we use the AC/DC Module of COMSOL Multiphysics. A multi-port network impedance is then determined to explain the ...

Coupled Heat and Mass Transfer Processes in Enclosed Environments

J.L.Wilson[1], and R. Dwivedi[1]

[1]New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA

Geothermally driven natural convection in enclosures is a ubiquitous process occurring in many physical environments such as caves, mines, etc. We have numerically simulated laminar and turbulent natural convection in isolated air-filled cavities, buried in a more conductive rock mass. We have modeled heat transfer using COMSOL's Convection and Conduction mode. To better understand the ...

Helium Two-Phase Flow in a Thermosiphon Open Loop

B. Baudouy[1] and F. Visentin[1]
[1]CEA, Irfu, SACM, Gif-sur-Yvette, France

The construction of high magnetic field superconducting coils requires the use of low temperature superconductors that must be cooled down to liquid helium temperature (4.2 K). Natural two-phase convection loops, i.e. thermosiphon loop, are used as cooling system for large superconducting magnets mainly because of its passive nature. The study present a thermohydraulics model realized with ...

An Analysis of Skimboard Hydrodynamics

N.D. Barnett[1], and E. Gutirrez-Miravete[2]
[1]General Dynamics-Electric Boat, Kingston, Rhode Island, USA
[2]Rensselaer at Hartford, Hartford, Connecticut, USA

This paper report on a study of the hydrodynamics of skimboards and surfboards using the computational fluid dynamics (CFD) module in COMSOL. The study analyzes the flow in a thin water layer underneath a skim board in a 2-D Cartesian coordinate. Three different sets of boundary conditions were employed and one of them produced the best agreement with previous findings.