
Simulate Static and Low-Frequency Electromagnetics with the AC/DC Module
Simulation Software for Low-Frequency Electromagnetics and Electromechanical Components
Analyzing electromagnetic systems and processes that encompass static and low-frequency ranges requires a powerful and flexible simulation tool. The AC/DC Module add-on to the COMSOL Multiphysics® platform provides you with a wide range of modeling features and numerical methods for investigating electromagnetic fields and EMI/EMC by solving Maxwell's equations.
The multiphysics capabilities of the COMSOL® software make it possible to investigate the impact of other physical effects, such as heat transfer, structural mechanics, and acoustics, on an electromagnetics model.
What You Get with the AC/DC Module
When you expand COMSOL Multiphysics® with the AC/DC Module, you unlock features for specialized low-frequency electromagnetics modeling in addition to the core functionality of the COMSOL Multiphysics® software platform.
The AC/DC Module includes the tools necessary for modeling:
- Capacitors
- Inductors
- Insulators
- Dielectric stress
- Coils
- Motors
- Sensors
- Solenoids
- Circuit parameter extraction (R-, L-, Z-matrices)
- Parasitic capacitance and inductance
- Combined SPICE circuit and field simulations
- Electric welding
- Electric insulation
- EMI/EMC
- Electromagnetic shielding
- Capacitive touchscreens
- Magnetic bearings
- Electromigration
- Induction furnaces
- Induction logging
- Dielectrics
- Generators
- Permanent magnets
- Electromagnets
- Actuators
- Plungers
- Transformers
- Transmission lines
- Graphene
- Electromachinery
- Electronics reliability
- Electrical contact resistance
- Electromagnetic fields in porous media
Multiphysics Couplings
Included in the AC/DC Module:
- Induction heating
- Joule heating and resistive heating
- Deformation and stress due to electromagnetic force and torque
- Lorentz forces in solids and fluids
Accessible with additional modules:
- Heat radiation
- Thermal contact resistance
- Bioheating
- Electrostatic deformation
- Piezoelectric effect
- Piezoresistive effect
- Electrostriction
- Magnetostriction
- Thermoelectric effect
- Joule heating in layered materials
- Inductively coupled plasma
- Capacitively coupled plasma
- Tissue ablation
- Charged particle tracing
- Dielectrophoresis
- General single- and multiphysics optimization
AC/DC Module Features and Functionality
Você Sabia? A physics interface is a user interface for a specific physics area that defines equations together with settings for mesh generation, solvers, visualization, and results.
Physics interfaces in the AC/DC Module:
- Electric Currents with Current Conservation
- Electric Currents, Layered Shell
- Electrical Circuit with SPICE netlist import
- Electrostatics with Charge Conservation
- Magnetic and Electric Fields
- Magnetic Field Formulation
- Magnetic Fields
- Magnetic Fields, No Currents
- Particle Field Interaction, Relativistic
- Rotating Machinery in 2D and 3D, Magnetic
- Electrostatics, Boundary Elements
- Magnetic Fields, No Currents, Boundary Elements
In addition to fundamental boundary conditions — such as potentials, currents, charges, and field values — a range of advanced boundary conditions are included. Some of these, including the Terminal, Floating Potential, and Circuit Terminal boundary conditions, are used to extract equivalent circuit parameters from a 2D or 3D model such as resistance, capacitance, inductance, and impedance values and matrices.
Boundary conditions in the AC/DC Module:
- Circuit Terminal
- Contact Resistance
- Dielectric Shielding
- Distributed Capacitance
- Distributed Impedance
- Distributed Resistance
- Electric Shielding
- Electrical Contact
- Lumped Port
- Periodic Boundary Condition
- Sector Symmetry
- Surface Impedance
- Surface Magnetic Current
- Thin Low Permeability Gap
- Transition
- Coil Excitation
- Homogenized Multiturn
- Single Conductor
- Floating Potential
- Magnetic Field
- Magnetic Flux Density
- Magnetic Insulation
- Magnetic Potential
- Perfect Magnetic Conductor
- Surface Current
- Boundary Current Source
- Continuity
- Displacement Field
- Electric Insulation
- Electric Potential
- Ground/Zero Potential
- Normal Current Density
- Surface Charge Density
- Zero Charge
- Magnetic Shielding
- B-H and H-B Curve Input
Modeling Thin Structures
For modeling very thin structures, you can use shell formulations that are available for direct currents, electrostatics, magnetostatics, and induction simulations. A specialized user interface is available for modeling direct currents in shells with multiple layers. Electromagnetic shell modeling makes it possible to replace the thickness of a thin solid in a CAD model with a physical property of a surface resulting in a much more efficient representation.
Unbounded or Large Domains
For accurate modeling of unbounded or large modeling domains, infinite elements are available for both electric and magnetic fields. For electrostatics and magnetostatics modeling, the boundary element method (BEM) is available as an alternative method for modeling large or infinite regions and works in combination with physics interfaces based on the finite element method (FEM).
Coil Modeling
Specialized coil features can be used to greatly simplify the setup process of coils for a range of magnetostatics and low-frequency electromagnetics models. In many such applications, the magnetic field is generated by electric currents flowing in conductive materials; for example, cables, wires, coils, or solenoids. The specialized coil features are used to easily model these structures and to translate lumped quantities, like currents and voltages, into distributed quantities, such as current densities and electric fields. Single-conductor and homogenized multiturn coils can be defined in full 3D or 2D axially symmetric models. A part library, with fully parametric coil and magnetic core shapes, enables faster model setup when analyzing transformers, inductors, motors, and actuators.
Rotating Machinery and Linear Motion
Using the built-in interface for rotating machinery, it is easy to model motors and generators. You can, for example, understand the behavior of induction or PM motors, particularly by capturing the eddy current losses that occur within the magnets. In any model that is used for simulating electromagnetic motion, you can examine the rigid or flexible body dynamics under the influence of magnetic forces and torques, induced currents, and mechanical load and spring configurations.
A general-purpose moving mesh functionality makes it possible to model linear motion. This is important for understanding the operation of components involving plungers, such as in magnetic power switches and general actuators.
You can choose from a large material database that includes:
- Ferromagnetic materials
- Ferrimagnetic materials
- B-H curves
- H-B curves
In addition, you can use materials from libraries made available by other add-on products.
Materials can be spatially varying, anisotropic, time-varying, lossy, complex-valued, and discontinuous. It is easy to expand the scope of a simulation with little additional work. You can define your own materials using mathematical expressions, look-up tables, or combinations of both. Alternatively, you can use externally defined materials written in C-code.
More generally, by using the equation-based modeling functionality, you can modify boundary conditions, material properties, and equations to customize a simulation for your specific needs.
The AC/DC Module offers automatic, semiautomatic, and adaptive mesh generation. Under the hood, the AC/DC Module formulates and solves Maxwell’s equations using FEM, BEM, or a combination of both methods, in concert with state-of-the-art solvers. Several types of finite element and boundary element mesh elements are available.
Numerical methods in the AC/DC Module:
- FEM
- BEM
- Linear and high-order nodal-based and edge element discretizations
- Combinations of tetrahedral, prismatic, pyramidal, hexahedral, triangular, and quadrilateral elements
- Linear and nonlinear solvers
Study types in the AC/DC Module:
- Static
- Frequency domain
- Time domain
- Automated terminal sweeps for circuit parameter extraction
Default visualizations are automatically adapted to the interface you have used and include plots of electric and magnetic fields, currents, charges, and voltages. You can easily add custom visualizations of any field quantity as well as composite expressions of field quantities and their derivatives.
The postprocessing tools can be used to generate lumped parameter matrices, such as capacitance or impedance matrices, as well as integrated, averaged, maximum, and minimum values. For example, you can use a maximum field evaluation to make sure the dielectric strength is not exceeded anywhere in your model, or get the total charge by integrating the charge density over a set of surfaces. By using cut-lines and cut-surface, it is possible to examine the field values on arbitrary cross sections of a model.
Postprocessing and visualization features in the AC/DC Module:
- Voltage plots
- Electric field plots
- Magnetic field plots
- Current density plots
- Charge density plots
- Arbitrary expressions of physical quantities
- Derived tabulated quantities such as R-, L-, C-, Z-, Y-, and S-matrices
- Total charge and current
- Force and torque vs. time
Make your simulation process more efficient with the built-in Application Builder by turning your models into specialized applications with customized inputs and outputs. You can distribute the applications you make to colleagues without simulation expertise so they can perform repetitive analyses on their own, streamlining the design process.
The workflow is simple:
- Transform your EM model into a specialized user interface (an application)
- Customize the app to your needs by selecting inputs and outputs for the application's users
- Add optional code for user-interface logic or additional nonstandard operations
- Use the COMSOL Server™ or COMSOL Compiler™ products to make them accessible to other team members
- Enable your team to run their own design analyses without further assistance
You can expand the capabilities of simulation throughout your team, organization, classroom, or customer/vendor base by building and using simulation apps.
If you use the MATLAB® software, you can easily drive COMSOL Multiphysics® simulations with MATLAB® scripts and functions. The LiveLink™ for MATLAB® interfacing product enables you to access COMSOL® operations through MATLAB® commands and blend these commands with your existing MATLAB® code, directly within the MATLAB® environment.
In order to make it easy for you to analyze electromagnetic properties of CAD models and electronic layouts, COMSOL offers the ECAD Import Module, CAD Import Module, Design Module, and LiveLink™ products for leading CAD systems as part of our product suite. The LiveLink™ products make it possible to keep the parametric CAD model intact in its native environment but still control the geometric dimensions from within the COMSOL Multiphysics® software, as well as produce simultaneous parametric sweeps over several model parameters.
You can also synchronize Microsoft® Excel® spreadsheet data with the parameters you define in the COMSOL Multiphysics® environment via the LiveLink™ for Excel® interfacing product.
Available interfacing products include:
- LiveLink™ for MATLAB®
- ECAD Import Module
- CAD Import Module
- Design Module
- LiveLink™ products for leading CAD software
- LiveLink™ for Excel®
View all available interfacing products in the product suite.
Design Electromagnetic Devices and Systems for the Real World
The products, devices, and components you design for the static or low-frequency range need to operate safely in the real world. For a comprehensive analysis, use the COMSOL Multiphysics® software and the AC/DC Module to see how multiple physics affect your design.
Most electromagnetic components, devices, and products are affected by another branch of physics, whether it be heat transfer, structural mechanics, or acoustics, to name a few. For the most accurate study possible, you can examine a variety of these effects simultaneously. The COMSOL Multiphysics® platform enables you to couple multiple physical effects in one software environment.
Toda empresa possui uma necessidade de simulação diferente. Para avaliar se o software COMSOL Multiphysics® atenderá ou não aos seus requisitos, entre em contato conosco. Ao falar com um de nossos representantes de vendas, você receberá recomendações personalizadas e exemplos totalmente documentados para ajudá-lo a aproveitar ao máximo sua avaliação e orientá-lo a escolher a melhor opção de licença para atender às suas necessidades.
Basta clicar no botão "Contate a COMSOL", preencher seus dados de contato, fazer qualquer comentário ou pergunta, e enviar. Você receberá uma resposta de um representante de vendas em um dia útil durante o horário comercial.